FISEVIER

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbabio

Corrigendum

Corrigendum to "The ζ subunit of the α -proteobacterial F_1F_0 -ATP synthase in *Paracoccus denitrificans*: A novel control mechanism of the central rotor" [Biochim. Biophys. Acta 1817S (2012) S27–S28]

M. Zarco-Zavala^a, E. Morales-Ríos^a, P. Serrano-Navarro^b, K. Wüthrich^b, G. Mendoza-Hernández^c, L. Ramírez-Silva^c, J.J. García-Trejo^{a,*}

The abstract which originally appeared should be replaced with the following:

The ζ subunit [1] is a novel inhibitory element of the *Paracoccus* denitrificans F_1 (Pd F_1)-ATPase and related α -proteobacteria, which works as a noncompetitive inhibitor of the sulfite-activated PdF₁-ATPase, with an IC50 of 220 nM when reconstituted into a PdF1 construct lacking the endogenous ζ and ϵ subunits. In contrast, the ϵ subunit of the PdF₁-ATPase was unable to inhibit the sulfite-activated PdF₁-ATPase, thus confirming that ζ rather than ε plays a central role in the inhibition of the α -proteobacterial F₁-ATPase. The ζ subunit inhibitory region was determined by limited proteolysis and functional inhibitory reconstitution experiments. Further analyses showed that during PdF_1 -ATPase activation by sulfite, the ζ subunit exposes its N- and C-termini. This contrasts with the ϵ subunit, which buries its C-terminal domain in the F_1 domain. The ζ subunit can also be reversibly cross-linked with rotor (γ, ε) and stator (α, β) subunits of the PdF₁-ATPase, as was previously also found for the IF₁ inhibitor of the mitochondrial F₁-ATPase [2]. The present data thus suggest that the mechanism of regulation by the ζ subunit involves the control of the intrinsic gyration of the central stalk of the α -proteobacterial F_1F_0 -ATPase, similar to the inhibitory mechanisms by the ϵ and IF_1 subunits in eubacterial and mitochondrial adenosine triphosphate (ATP) synthases. The three-dimensional structure of the *P. denitrificans* ζ subunit determined by nuclear magnetic resonance (NMR) spectroscopy has a four-helix bundle architecture (PDB ID: 2LLO), which is different from the structures of the aforementioned ϵ and IF_1 subunits. The present data thus indicate that a novel mechanism, with a new structural basis, contributes to regulation of the intrinsic gyration of the bacterial F_1F_0 nanomotor.

References

- E. Morales-Rios, F. de la Rosa-Morales, G. Mendoza-Hernandez, J.S. Rodriguez-Zavala, H. Celis, M. Zarco-Zavala, J.J. Garcia-Trejo, FASEB J. 24 (2010) 599–608.
- [2] F. Minauro-Sanmiguel, C. Bravo, J.J. Garcia, J. Bioenerg. Biomembr. 34 (2002) 433–443.

* Corresponding author.

E-mail address: jjgartre@unam.mx (J.J. García-Trejo).

^a Department of Biology, Chemistry Faculty, National Autonomous University of Mexico (UNAM), Mexico

b Joint Center for Structural Genomics and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA

^c Medicine Faculty, UNAM, Mexico